ISSN : 2395-3160 (Print)

Volume 5 (2) I

Special Issue

July 2019

Biannaul International Peer Reviewed Journal UGC - CARE Listed Journal in Group D

Journal of Global Resources

ISSN: 2395-3160 (Print)

Volume 5 (02) I

Special Issue

July 2019

Biannual International Refereed/Peer Reviewed Journal UGC CARE Listed Journal in Group D

JOURNAL OF GLOBAL RESOURCES

Published by: Institute of Sustainable Development, Environmental & Scientific Research

Published By:

Institute of Sustainable Development, Environmental & Scientific Research (ISDESR) The Editor, **Journal of Global Resources**, Bane Vihar, Near 200 Feet Road, Jaipur 302012 Rajasthan, INDIA Institute's Registered Office: ISDESR, Behind Girls College, Churu-331001 Rajasthan

Email: globalresources2015@gmail.com

www.isdesr.org

Single Copy: Rs. 1150/-

Volume 5 (02) I Special Issue Published: July 2019 © ISDESR

All disputes to be settled in Jaipur/Churu Court only.

The views expressed by the writers in this journal don't necessarily reflect the views or policies of Journal of Global Resource or editorial board or editors or publisher. Writers are responsible for their views.

57.	THE CONCEPT OF WASTE MANAGEMENT Shama B. Lomate and Sunita S. Bhosle				
58	THERMODYNAMIC STUDIES OF TRANSITION AND RARE EARTH METAL IONS WITH SCHIFF BASE IN AQUEOUS MEDIA Shaukat Patel, Ramesh Ware, Sahebrao Naikwade and Shailendrasingh Thakur				
59.	ASSESSMENT OF PHYSICO-CHEMICAL QUALITIES OF YELDARI RESERVOIR TO EVALUATE THEIR IMPACTS ON ICHTHYOFAUNA DIVERSITY. <i>M. G. Shirale and H. S. Jagtap</i>	279-285			
60.	THERMODYNAMIC STUDIES OF RARE EARTH METAL COMPLEXES WITH SCHIFF BASE 2-HYDROXY-5-BROMO ACETOPHENONE-N-(4- METHOXYPHENYL)IMINE IN MIXED SOLVENT SYSTEM Shoeb Peerzade, Ramesh Ware, S.D.Naikwade and Shailendrasingh Thakur	286-301			
61.	POTENTIAL OF HERBAGE MIXTURE AS SILAGE PREPARED WITH MECHANICAL PRETREATMENT. Smita Basole and Sunita Bhosle	302-304			
62.	BIOLOGICAL CONTROLS OF FUNGI ON ONION (ALLIUM CEPA L.) Subhash B. Pawar, Prasant P. Pangrikar and Ashok M. Chavan	303-308			
63.	ANATOMICAL INVESTIGATIONS IN <i>TEPHROSIA TINCTORIA</i> PERS. <i>Tukaram Gitte and Arvind Dhabe</i> *	309-318			
64.	EFFECTS OF FLUORIDE ON THE RESPIRATORY METABOLISM OF FRESH WATER FISH , CATLA CATLA V.D. Suryawanshi and P.T.Sonwane	319-322			
65.	"STEVIA" THE SUGAR PLANT Vaishwani Disle and P.D.Gaikwad	323-325			
66.	GREEN SYNTHESIS OF IMODAZO [1, 2A] PYRIDINE Vijay P. Pagore, Priti N. Bajad, Balaji D Rupnar and Rajendra P. Pawar	326-329			
67.	EFFECTS OF MERCURY CHLORIDE ON BIOCHEMICAL PROFILE OF FRESHWATER FISH CYPRINUS CARPIO V. D. Suryawanshi . S.B.Hiwale,P.D.Gaikwad and P.T.Sonwane	330-333			
68.	STUDIES ON PHYSICO-CHEMICAL ANALYSIS OF WATER POLLUTION OF SINDHPHANA RIVER IN MAJALGAON CITY (MS). V.V.Naiknaware* and V. V. Borgaonkar	334-335			
69.	OPTIMIZATION OF CULTURAL CONDITION FOR LACCASE PRODUCTION FORM <i>CURVULARIA LUNATA</i> V. R. Mhaske and M. S. Wadikar	336-339			
70.	QUANTITATIVE INVESTIGATION OF PHYTOCONSTITUENTS PRESENT IN ACACIA LEUCOPHLOEA (ROXB.) WILLD. METHANOLIC LEAF AND BARK EXTRACT. Wankhade, M.S.	340-344			
71.	SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL SCREENING OF NI[II], CU[II] ANDZN[II]ACETATE COMPLEXES OF SCHIFF BASE LIGAND Yogesh N. Bharate, Mahadeo A. Sakhare, Satish B. Jadhav and S. D. Naikwade	345-352			

ISSN: 2395-3160 (Print)

66

GREEN SYNTHESIS OF IMODAZO [1, 2A] PYRIDINE

¹Vijay P. Pagore, ²Priti N. Bajad, ³Balaji D Rupnar, ⁴Rajendra P. Pawar

^{1,2}Department of Chemistry, ShriMuktanand college,Gangapur, (MS) India 431 109.
 ³Department of Chemistry, R. B. attal College, Georai Dist. Beed
 ⁴Department of Chemistry, Deogiri College, Station Road, Aurangabad (MS) India 431 005.
 <u>rppawar@yahoo.com</u>

Absrtact:

An efficient ionic liquid [EMIM][OH] catalyzed water mediated condensation of phenacyl bromide and 2 amino pyridine in presence of microwave irradiation has been carried out for the synthesis of imodazo[1, 2a]pyridine derivatives. This method is simple, clean and rapid path for environmental benign synthesis of imodazo[1, 2a]pyridine.

Key-words: Imodazo[1, 2a]pyridine, ionic liquid, microwave assisted synthesis, water, phenacyl bromide

Introduction:

In is today's need to follow green chemistry principles for the organic synthesis. Many different techniques like microwave, ultra-sonication, grinding and use of water as reaction medium are getting more importance in organic synthesis.

Imidazo[1,2a] pyridines are important heterocyclic compounds because of their biological activities and interesting therapeutic properties such as anticancer¹, anti-inflammatory behavior², antibacterials³, antiulcer⁴, Hypnotic⁵, calcium channel blockers⁶. Researchers synthesize imidazo[1, 2-a] pyridine from various starting materialse.g. condensation of 2-amino pyridine, aldehydes and isocynates⁷, 2-amino pyridine, aldehydes and TMSCN⁸, 2-amino pyridine, alkenes / alkynes and aldehydes⁹ and 2-amino pyridine and α -halo-carbonyl compounds¹⁰.Various catalysts are used for the synthesis of imidazo[1, 2-a] pyridine such as ammonium chloride¹¹, InCl₃¹², [bmim] Br⁸etc.

Considering these biological importance of imidazo[1, 2-a] pyridine and today's need of green methodology for synthesis we report here the microwave assisted ionic liquid catalyzed water mediated synthesis of imidazo[1, 2-a] pyridine.

Materials and methods

Chemical reagents were purchased from SD fine chemical companies, sigma Aldrich India in high purity, used without further purification. All the materials purchased were of commercial grade reagent. Melting points were determined in open capillaries using an Electrothermal Mk3 apparatus. All experiments under microwave irradiation were carried out inmicrowave synthesis system 700W model manufactured by RAGA's Scientific Microwave Synthesis System Pvt.Ltd,Pune, India has a maximum power output of 700W and 2450 MHz frequency. FTIR spectra were recorded on a Perkin-Elmer FTIR spectrometer 65 in KBr pellets. ¹H NMR spectra were recorded on a Bruker 400 MHz FT-NMR spectrometer instrument usingDMSO-d6 (deutrated dimethyl sulfoxide) as a solventchemical shift values are recorded in units δ (ppm) relative to tetramethylsilane (Me₄Si) as an internal standard.The progresses of the reactions were monitored by TLC (Thin Layer Chromatography).

General procedure for the synthesis of Imidazo[1,2-a] pyridines:

A mixture of phenacyl bromide(1 mmol), 2 amino pyridine (0.8 mmol) and [EMIM][OH] (0.2 mmol) was taken in a 10 ml glass vial equipped with a cap. The tube was kept in the irradiation cavity in the monomode microwave oven and irradiated with microwaves at 140 watt at 180^oC for the specified time as mentioned in Table 1. The progress of reaction was monitored by TLC. After completion of reaction, the reaction mixture was filtered, washed with water and purified by recrystalization with ethanol to afford the pure product.

Entry	Phenacyl Bromide	Product	Time in sec	Yeild in %	M.P.
1	Br		120	85	136-137 ¹³
2	0 Br		120	82	144-145 ¹⁴
3	O Br OCH ₃		120	78	135-136 ¹³
4	O Br Cl		90	84	206-207 ¹³
5	O Br	F	90	80	163-164 ¹⁴
6			75	85	182 ¹⁴
7	O Br Br	K N → Br	90	80	215-216 ¹⁴
8	CI CI CI		75	82	172 ¹⁵

Table 1: Synthesis of imidazo[1, 2-a] pyridine from phenacyl bromide and 2 amino pyridine

Result and discussion:

Phenacyl bromide (1.2 mmol) and 2 aminopyridine (1 mmol) on irradiating with microwaves in presence of [EMIM][OH] in water the reaction was completed in just 1 -2 min affording imidazo[1,

2-a] pyridine (Scheme1). Progress of reaction was monitored by thin layer chromatography using ethyl acetate/hexane in appropriate proportions as eluent. The present report offers cleaner and simpler experimental and work-up procedures. After completion of reaction, the reaction mixture was filtered, washed with water and recrystallized. There was no need of chromatographic purification techniques. The method was quite simple and the products were formed within a few minutes in very good yields. The reason of rapid reaction time is rapid rise in temperature because of strong absorption of microwaves in presence of ionic liquid. The scope and generality of this method was checked using different substituted phenacyl bromides. The α -bromoacetophenone with electron-rich substituent as well as electron-poor substituent undergoes condensation reaction with 2-aminopyridine equally well to afford the corresponding products. All the imidazo[1, 2-a] pyridine derivatives were characterized by melting point, IR, ¹H NMR spectral analysis.

Spectral data of representative compound is mentioned below:

2-(4-Methylphenyl)imidazo[1,2-\alpha]pyridine:IR (KBr), v (cm⁻¹): 3461, 3130, 2838, 1634, 1507, 1485, 1370, 1247, 1148, 823, 743; 1H-NMR: δ = 2.37 (s, 3 H), 6.72 (s, 1 H), 7.12 (s, 1 H), 7.24 (s, 2 H), 7.64–7.65 (d, 1 H), 7.60 (s, 1 H), 7.78–7.83 (d, 3 H), 8.05 (s, 1 H).

2-(4-Methoxyphenyl)imidazo[1,2-α]pyridine: IR (KBr), v (cm⁻¹): 3468, 3136, 2838, 1634, 1507, 1483, 1374, 1249, 1032, 839, 744; 1H-NMR: δ = 3.86 (s, 3 H), 6.72–6.75 (t, 1 H), 6.94–6.98 (d, 2 H), 7.11–7.16 (t,1 H), 7.59-7.62 (d, 1 H), 7.75 (s, 1 H), 7.86-7.89 (d, 2 H), 8.1 (d, 1 H).

Mechanism:

i) Base abstract proton to form anion

ii) attack of anion of 2 aminopyridine on phenacyl bromide followed by cyclisation and dehydration

Conclusion:

In summary, we report here a simple, environment benign ionic liquid catalyzed, water mediated method for the synthesis of biologically important imidazo[1, 2-a] pyridine derivatives under microwave irradiation.

Acknowledgement:

The authors are thankful to the principal Dr. M. L. Jadhav, Deogiri College, Aurangabad for providing laboratory facilities which assisted for the successful completion of present work.

References:

- 1. R. G. Fu, Q. D. You, L. Yang, W. Wu, C. Jiang and X. Xu, *Bioorg. Med. Chem.*2010, **18**, 8035.
- 2. K. C. Rupert, J. R. Henry, J. H. Dodd, S. A. Wadsworth, D. E. Cavender, G. C. Olini, B.
- Fahmyand J. Siekierka, *J Bioorg Med ChemLett.*, 2003, **13**, 347. 3. A. T. El-Sayed, *Eur. J. Med. Chem.*, 2009, **44**, 4385.
- 4. J. J. Kaminskyand A. M.Doweyko, *J Med Chem.*, 1999, **40**, 427.
- F. Jia, P. A. Goldstein and N. L. Harrison, *Journal of Pharmacology and ExperimentalTherapeutics*, 2009. **328**, 1000.
- 6. P.J. Sanfilippo, M. Urbanski, J. B. Press, B. Dubinsky and J. B. Moore, *J Med Chem.*, 1991,**34**, 2060.
- 7. A. L. Rousseau, P.Matlaba, C. J. Parkinson, *Tetrahedron Letters*, 2007, 48, 4079.

- 8. A. Shaabani and A.Maleki,*Monatsheftef€urChemie*,2007, **138**, 51.
- 9. S. Mishra and R.Ghosh, 2011, *Synthesis*, **21**, 3463.
- 10. Z. Dongjian, C. Jiuxi, W. Dengze, L. Miaochang, D. Jinchang and W.Huayue, *J. Chem.Research.*, 2009, **2**, 84.
- 11. V. Z. Parchinsky, O.Shuvalova, O.Ushakova, D. V. Kravchenko and
- a. M. Krasavin, Tetrahedron Letters, 2006, 47, 947.
- 12. R. Akbarzadeh and G. I. Shakibaei, *MonatshChem*, 2010, 141, 1077.
- 13. D. J. Zhu, J. X. Chen, M. C. Liu, J. C. Ding and H. Y. Wu, J. Braz. Chem. Soc., 2009, 20, 482.
- 14. Z. G. Le, Z. B. Xie and J. P.Xu, *Molecules*, 2012, **17**, 13368.
- 15. S. Kumar and D. P.Sahu, *Arkivoc*, 2008, (xv), 88.